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Spatially uniform traveling cellular patterns at a driven interface
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We report on a study of asymmetric, traveling patterns which develop at a driven fluid-air
interface in the experimental system known as the printer’s instability. We find that the traveling
pattern appears via a supercritical parity-breaking transition, at which the pattern loses its reflection
symmetry and begins to drift with constant speed. From measurements of the degree of asymmetry of
the drifting pattern as a function of the experimental control parameter, we find that the asymmetry
increases with the square root of the control parameter, and that the drift velocity is linear in the
asymmetry. This behavior is in accord with recent theoretical predictions. Our results do not agree,
however, with the predictions of a model of the parity-breaking transition involving the coupling of

spatial modes with wave numbers ¢ and 2gq.

PACS number(s): 47.54.4r, 47.20.Ky, 68.10.Gw

I. INTRODUCTION

Stationary, one-dimensional patterns occur in many
dynamical systems [1]. Typically, an initially spatially
uniform system develops such a pattern, described by
a one-dimensional wave vector, when it is driven suffi-
ciently far out of equilibrium by the application of an
appropriate external forcing. An example from the ex-
periment to be discussed in this paper is shown in Fig. 1.
This figure shows video images of an oil-air interface,
which is initially straight. As the interface is driven out
of equilibrium by changing an experimental control pa-
rameter, a one-dimensional pattern of fingers develops,
as shown in Fig. 1(a). This pattern has certain symme-
try properties. Since it is stationary, it is invariant under
translation in time. It is periodic in space (neglecting
the finite length of the experimental apparatus), and so
is invariant under translation in the direction along the
pattern by an integer number of wavelengths. Finally,
it is symmetric with respect to reflections about lines
perpendicular to the pattern wave vector; this is termed
parity symmetry.

As the interface is driven further from equilibrium by
adjustment of a second control parameter, the pattern of
Fig. 1(a) itself becomes unstable to a secondary insta-
bility which breaks parity symmetry, leading to patterns
like that shown in Fig. 1(b). This pattern is still spa-
tially periodic, but is now asymmetric. In addition, it
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FIG. 1. Examples of fingering patterns observed at the
oil-air interface in the printer’s instability experiment. (a)
Symmetric, stationary fingers. (b) Asymmetric fingers drift-
ing to the right.

1063-651X/94/49(1)/483(11)/$06.00 49

propagates with constant velocity.

The transition from the stationary, symmetric pattern
of Fig. 1(a) to the traveling, asymmetric pattern of Fig.
1(b) is an example of a parity-breaking bifurcation. Such
a bifurcation was postulated by Coullet et al. [2], as an
explanation for phenomena observed in other experimen-
tal systems, to be discussed below. Parity-breaking was
shown to be one of ten possible generic secondary insta-
bilities of stationary one-dimensional patterns by Coul-
let and Iooss [3]. Parity-breaking bifurcations have re-
cently been the subject of a substantial amount of theo-
retical work [2,4-19]. Experimentally, both localized re-
gions of broken parity, which propagate through a sta-
tionary background pattern, and extended broken-parity
traveling-wave states have been observed in several lab-
oratory systems [20-35]. While the system we study has
two control parameters, the same is not true of all experi-
mental systems where parity breaking has been observed,
nor are two control parameters necessary theoretically.

In this paper we report on a study of a parity-breaking
transition in a fluid dynamical system known as the
printer’s instability [28]. The system consists of a thin
layer of fluid between two acentrically mounted horizon-
tal cylinders; a cross section of the experimental appara-
tus is shown in Fig. 2. The fluid-air interface is driven
by the rotation of one or both of the cylinders, and pat-
terns such as those shown in Fig. 1 develop at the inter-
face. A phase diagram showing the different dynamical
states observed in this system, in terms of the rotation
speeds of the two cylinders, is shown in Fig. 3. When
only one cylinder rotates, a pattern of stationary fingers
develops at the interface above a critical rotation speed
[36,37]. When the cylinders corotate, the pattern is spa-
tiotemporally chaotic [38], and when they counter-rotate,
traveling-wave states are seen in the regions labeled TW
in Fig. 3. On the edge of the TW regions, localized, prop-
agating inclusions of broken parity are found (labeled SW
in Fig. 3), separating the traveling-wave state from an-
other state of stationary fingers [28].

Variants of this experimental system have been of
longstanding interest, since they model the geometry
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FIG. 2. A cross-sectional view of the experimental appara-
tus. Traveling-finger patterns occur when the two cylinders
are rotated as indicated in the figure. The interface at the
bottom right of the figure is monitored with a video camera.

of simple printing and coating machines [39-42]. Sev-
eral aspects of the dynamical behavior exhibited by the
printer’s instability have been studied by Rabaud and
co-workers [28-31,36,38,43,44]. The stationary patterns
formed when only one cylinder rotates have been stud-
ied [36,43]. Rabaud, Michalland, and Couder mapped
out the dynamical phase diagram of this system as a
function of the rotation velocities of the two cylinders
[28,29]. They also studied the wavelength selection pro-
cess in transients following sudden changes of the cylinder
speed [30]. In a recent paper, Cummins et al. [31], studied
the bifurcations that occur when, for small values of the
outer cylinder speed (i.e., values below the onset of the
stationary fingering pattern), the inner cylinder speed v;

300
SV\‘" ™
. - 75
. :_/ sTC
S
. \ cee,.,,
2 " s
E .
E '
o A ™
stable LI
SW
-250
-250 0 400
v; (mm/s)

FIG. 3. Dynamical phase diagram of the interface, in terms
of the rotation speeds of the two cylinders. S, stationary fin-
gers; TW, traveling waves; STC, spatiotemporal chaos; SW,
solitary waves. A typical trajectory followed in the current
experiments is shown by the dashed horizontal line in the
second quadrant.

was increased in small steps. They found a sequence of
three transitions. First, the stationary fingering pattern
appeared. Then, at higher values of v;, the pattern lost
its parity symmetry and a state of uniform, asymmetric,
traveling fingers appeared. Finally, at still higher v;, the
pattern’s wavelength changed at what Cummins et al.
identified as a spatial period-doubling transition. Cum-
mins et al. concluded that the behavior they observed
could not be described by a model, to be described be-
low, involving the coupling of two spatial modes of wave
numbers g and 2q [31].

In our experiments on this system, we find that the
traveling pattern of broken-parity fingers appears via a
supercritical parity-breaking bifurcation [35]. Our results
are in good agreement with the behavior expected at such
a transition, on the basis of general symmetry arguments
[2,3]. We also compare our results with the predictions
of a specific model of the parity-breaking bifurcation, in-
volving the resonant coupling between spatial modes with
wave numbers ¢ and 2q [6,13]. Our results do not agree
with the predictions of this model, and we discuss possi-
ble reasons for the disagreement.

In the next section of this paper, we briefly review the
theory of parity-breaking bifurcations [2,4-19], as well
as previous experimental observations of broken-parity
states [20-35]. We describe our experiment in Sec. III,
and present our results in Sec. IV. In Sec. V we discuss
our results and compare them with theoretical expecta-
tions. Section VI is a brief summary of our work. A brief
report on parts of this work has appeared elsewhere [35].

II. PARITY BREAKING

Coullet, Goldstein, and Gunaratne [2]| introduced a
model for a parity-breaking bifurcation of a periodic, one-
dimensional pattern, based on simple symmetry argu-
ments, which was further developed in Refs. [4,5]. Con-
sider a pattern U(z), which can always be written as
a sum of parity-symmetric (S) and antisymmetric (A)
components:

U(z) = SUs(z + ¢) + AUa(z + ¢). (1)

Here z is the coordinate along the direction of the pat-
tern. S and A are the amplitudes of the symmetric and
antisymmetric parts of the pattern, respectively. Us and
U, are even and odd functions of their arguments, re-
spectively, i.e.,

Us(z) = Us(—z) , (2)

UA = *UA(—J:). (3)

S, A, and ¢ are assumed to be slowly varying real func-
tions of space. If A = 0 the pattern has parity symmetry;
A can be taken to be the order parameter of the broken-
parity state. The phase variable ¢ gives the phase of
the pattern relative to that of the underlying symmetric
pattern. A nonzero value of ¢; corresponds to a moving
pattern, while ¢, = (¢—qo)/qo is the relative difference in
wave number between the asymmetric state, with wave
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number ¢, and the underlying pattern, which has wave
number gp.

To describe the dynamics of the broken-parity pattern,
equations of motion are required for both A and ¢. From
the invariance of the dynamics with respect to observers
on opposite sides of the pattern, one can write down the
coupled equations [2,3,13]

AtzAmz+ﬂA_A3+€¢a:A+"'v (4)

¢t:¢mm+WA+"" (5)

Here we have assumed a supercritical bifurcation to the
broken-parity state, in accordance with our experimen-
tal results. p is the control parameter; the bifurcation
occurs at u = 0. € and w are unknown coupling parame-
ters. Coullet et al. [2] originally considered a subcritical
bifurcation and thus included a term proportional to A°
in Eq. (4). Other terms involving higher derivatives of
A and ¢ are also allowed by symmetry but were not in-
cluded in the discussion of Ref. [2]. The effect of these
terms will be discussed below.
From Eq. (4), we expect the asymmetry to grow like

A= (n+ego)V? (6)

for a spatially uniform pattern, while Eq. (5) shows that
an asymmetric pattern will drift with a constant velocity
[3]. The time derivative of ¢ is equal to the pattern’s
phase velocity, vy, so, again for a spatially uniform pat-
tern,

Vg = wA. (7)

This simple model was developed in substantial detail
in Refs. [2,4,5], particularly under the assumption of a
subcritical parity-breaking bifurcation, and reproduces
many of the qualitative features of the localized broken-
parity wave packets observed in recent experiments.

If spatially varying perturbations of the pattern are
allowed, then additional terms must be included in the
amplitude and phase equations, Egs. (4) and (5). It has
been shown in this case that the uniform pattern is unsta-
ble to long-wavelength perturbations [13]. In particular,
the term in Eq. (4) proportional to ¢, A, which couples
the phase and the amplitude of the asymmetry, is always
destabilizing. This suggests that, at least close to the
parity-breaking bifurcation, a spatially uniform traveling
pattern should not exist.

A more specific model of parity breaking involving
the resonant coupling of spatial modes with wave num-
bers q and 2q was first investigated theoretically by Mal-
omed and Tribelsky [6], and since then by many others
[7-13,16-19]. Malomed and Tribelsky [6] found that a
stationary periodic pattern became unstable to a pat-
tern drifting with constant velocity if the second spatial
harmonic was sufficiently weakly damped.

Consider a pattern U (z, t) involving two modes of wave
numbers ¢ and 2¢, which we can write as [13]

U(z,t) = [C(z,t)e'? + c.c.]
+ [D(z, t)e?e® 4 cc] - (8)

Here C and D are the amplitudes of the two modes, and
c.c. indicates the complex conjugate. From the symme-
try of the pattern with respect to translations in space,
one can write down a set of coupled equations for the
dynamics of the amplitudes of the two modes:

C: = uC — C*D — a|C|2C - B|D|?C, (9)

D, =vD + C? —~|C|*D - §|D|*D. (10)

These equations describe a resonant interaction of the
two modes. We assume v < 0, so the 2¢ mode is linearly
damped. The coefficients a, 3, v, and § are positive to
ensure the stability of the solutions, and we have chosen
the signs of the quadratic terms such that the parity-
breaking instability exists [13].

Writing

C=Re®, D=Se?®, L =2¢—-0, (11)

and inserting these definitions into Egs. (9) and (10), we
get

Ry = (u— aR? — BS?)R — RScos Y, (12)
S¢ = (v —yR?* - §5%)S + R%*cos %, (13)
T¢ = (25 — R?/S)sinX, (14)

¢, = Ssin%. (15)

A stationary pattern with R # 0, S # 0, ¥ = 0, and
¢ arbitrary appears at u = 0. This state loses stability,
via a supercritical bifurcation, to a drifting pattern with
¢ = constant and all other time derivatives equal to zero
when p is increased such that 25 — R?/S vanishes. This
can occur as long as v is not too negative, i.e., as long
as the second harmonic is not too strongly damped. The
order parameter of this bifurcation is the phase mismatch
3.

This ¢—2¢ model is in fact equivalent to the model of
Goldstein et al. described above [5], as long as the pat-
tern involves only two spatial modes. It predicts a su-
percritical parity-breaking bifurcation, leading to a con-
stant velocity drift of the pattern. The order parameter
¥ grows like (u — p*)Y/2, where p* is the value of the
control parameter at which the parity-breaking bifurca-
tion occurs, and the drift velocity of the pattern is, from
Eq. (15) (note the different definitions of the phase vari-
able ¢ in the two models),

vy = P/q = —‘j—sinE. (16)

Traveling patterns with broken parity symmetry have
been observed in several different experimental systems,
but for the most part have been only qualitatively char-
acterized. The observed broken-parity waves appear to
take two forms: localized patches of broken parity, which
propagate through an otherwise stationary, symmetric
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pattern, and extended traveling-wave states, which can
include source and sink defects. In most of the experi-
mental systems described below, adjustment of a single
control parameter produces first, a stationary pattern,
and, at higher values, the broken-parity state. The ex-
ceptions are noted below.

A localized broken-parity state was first reported by Si-
mon et al. [20,21] in experiments on the directional cool-
ing of liquid crystals at the isotropic-nematic transition.
This system was investigated both numerically and ana-
lytically by Rappel and co-workers [15,16,18]. Localized
regions of broken parity have also been observed in exper-
iments on Rayleigh-Bénard convection in a narrow slot
[26,27], and in Taylor vortex flow with counter-rotating
cylinders [33]; the existence of a parity-breaking bifurca-
tion in this last system (which has two control parame-
ters) had been predicted theoretically by Riecke and Paap
(17]. In the first and third of these cases, the observed
parity breaking was successfully explained in terms of the
q—2q model.

Faivre and co-workers have studied broken-parity
waves in work on the directional solidification of lamellar
eutectics [22-24]. They observed both localized, prop-
agating regions of broken parity [22,24], and extended
regions of uniform propagating cells [23]. This system
has been treated theoretically in Refs. [14,19].

Gleeson et al. observed extended regions of propagat-
ing, asymmetric cells emanating from a source defect at a
grain boundary in a directional solidification experiment
[32]. They determined the asymmetry of the traveling
cells from analysis of video images of the solid-liquid in-
terface, and demonstrated that their propagation speed
was linear in the asymmetry, as well as in their control
parameter, the pulling speed. Mutabazi and Andereck
[34] observed a supercritical bifurcation from a pattern
of stationary rolls to an extended state of drifting rolls
in the Taylor-Dean system (which has two control pa-
rameters), and concluded that in their system, the drift
instability was a result of interactions between the fun-
damental spatial mode and its second harmonic.

A secondary instability of a pattern of parametrically
excited surface waves in an annular container, leading to
a drifting pattern, has been observed by Douady et al.
[25]. In Ref. [13], Fauve et al. showed that this drifting
pattern arose from a breaking of parity symmetry.

Both localized, propagating packets of broken-parity
fingers and spatially uniform broken-parity waves [35]
have been observed in the printer’s instability, the system
to be considered here. As noted previously, this system
involves two control parameters. Rabaud and co-workers
[28,29] observed both forms in steady state conditions,
and also observed localized broken-parity waves in the
transient response of the system to sudden changes in
the control parameter [30].

It is worth noting that, although they appear not to
have been explicitly treated as such, spatially-uniform
broken-parity traveling waves occur in many other much-
studied fluid dynamical systems. The traveling-wave
state in binary fluid convection is one example which has
been studied extensively in recent years [45-53]. The
transition from traveling waves to steady overturning

convection as the Rayleigh number is increased, displays
features which indicate that it is a parity-breaking bi-
furcation in reverse. In particular, the drift velocity of
the traveling convection rolls goes to zero roughly as
(r* —7)Y/2, where r is the reduced Rayleigh number (i.e.,
the experimental control parameter), and r* its value at
the transition to stationary overturning convection [46].
In addition, it is known from both optical shadowgraph
measurements of the traveling rolls [47,48] and from nu-
merical integration of the equations of motion for this
system [47,52,53] that the parity symmetry of the trav-
eling rolls is broken—specifically that the concentration
profile is different in adjacent rolls—and that this differ-
ence grows as r is decreased into the traveling-wave state
and the traveling speed of the rolls increases.

III. EXPERIMENT

Our experimental apparatus is illustrated schemati-
cally in Fig. 4. It consists of two cylinders, with one
mounted inside the other such that the cross section
of the apparatus was as in Fig. 2. The inner cylinder
was made of white Delrin and had a radius r; = 50.4
mm and length /; = 202 mm. It was mounted on an
axle and supported by bearings. The outer cylinder was
made of transparent Plexiglas and rested on four bearing-
mounted rollers. It had radius 7o = 66.7 mm and length
lo = 210 mm. Annular end caps on the outer cylinder
contained the experimental fluid. In terms of the coor-
dinate system defined in Fig. 4, the z positions of the
two ends of the inner cylinder could be independently
adjusted with micrometer screws, as could the y posi-
tions of each end of the outer cylinder. The x position
of the outer cylinder as a whole could also be adjusted.
The cylinders could be independently rotated about their
axes by two computer-controlled microstepping motors
[54], with a minimum increment in rotation speed of ap-
proximately 0.1 mm/s.

The “nip” region near the bottom of the cylinders,
where the gap between them is smallest, was filled with
silicone oil. We used an oil with viscosity p = 0.525
g/cms, surface tension 0 = 21.8 g/s, and density p =
0.963 g/cm® at room temperature [55]. The oil-air inter-
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FIG. 4. Schematic diagram of the experimental apparatus.
For a description, see the text.
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face at the front of the apparatus was monitored with a
charge-coupled-device (CCD) video camera and monitor,
and data were recorded on a VCR or stored on a personal
computer using a video frame grabber. Images of the
interface presented in this paper have been contrast en-
hanced, but are otherwise unprocessed. For quantitative
analysis of the interface shape, the interface height as a
function of z was extracted from video images by having
the computer trace along the path of darkest pixels from
a given starting point.

In the experiments reported here, the minimum width
of the gap between the cylinders was 0.5 mm, set with the
micrometer screws. The stability of the stationary finger-
ing pattern observed when only one cylinder rotated was
very sensitive to the parallelism of the cylinder axes; this
fact was used to optimize the cylinder alignment. From
the way in which the stationary pattern appeared at its
onset, we estimate that the gap between the cylinders
was approximately 5% (i.e., 25 pm) larger in the middle
of the cylinders than at the edges. This nonuniformity in
the gap thickness did not seem to have an influence on
the behavior of the broken-parity waves studied here.

The traveling-wave states with which this paper is con-
cerned lie in the areas labeled TW on the phase diagram
shown in Fig. 3. In a typical experimental run, we set the
outer cylinder’s velocity, v,, to a value above the onset of
the stationary fingering pattern, which for our geometry
occurred at vy = 111.5 + 2.5 mm/s. After allowing this
pattern to stabilize, we then increased the inner cylinder
velocity, v;, in small steps in the opposite direction, i.e.,
such that the cylinders were counter-rotating, allowing
sufficient time between steps for the pattern to reach a
steady state. A video record of the pattern was then
made, and v; further increased. A typical experimental
path is indicated by the dashed horizontal line in Fig. 3.

The measurements reported here were done in a rather
restricted range of v,, between v, = 1.25v,. and v, =
1.41v,.. For smaller values of v,, no traveling states were
observed in our apparatus; the pattern was always sta-
tionary. At higher values of v,, the traveling patterns
we observed were no longer spatially uniform, and their
behavior was rather more complicated than that of the
uniform traveling waves. Results of measurements in this
regime will be presented elsewhere [37].

IV. RESULTS

Figure 5 shows a sequence of interface patterns ob-
served for a particular value of the outer cylinder rotation
speed, v,, as the inner cylinder’s rotation speed, v;, is in-
creased in small steps from zero. Initially, with v; = 0,
the pattern is stationary and symmetric with respect to
reflections, as in Fig. 5(a). Figure 6(a) is a space-time
image of such a stationary pattern. Each horizontal line
of pixels in Fig. 6 is the video image of a single line of
pixels across the interface pattern, recorded at regularly
spaced times.

When v; is increased slightly above zero, the pattern
of fingers at the interface loses its reflection symmetry
and begins to drift. Initially, the drift is spatially dis-

position (mm)

FIG. 5. Patterns observed at the oil-air interface with
v, = 139.4 mm/s. (a) Stationary, symmetric fingers at v; = 0;
(b)—(f) asymmetric fingers drifting to the left at successively
higher values of v;: (b) v; = 6.3 mm/s; (c) vi = 7.9 mm/s;
(d) vi = 9.5 mm/s; (e) v; = 11.1 mm/s; (f) v; = 12.7 mm/s;
(g) stationary, symmetric fingers at v; = 15.8 mm/s.

position (mm)
(a) 0 70

i1 47

position (mm)

FIG. 6. Space-time images of the fingering patterns. (a) A
stationary pattern; (b) a drifting pattern at v, = 143.8 mm/s,
v; = 9.5 mm/s.
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ordered. The pattern contains source and sink defects,
where domains of fingers drifting in opposite directions
meet. This disorder is transient in the parameter range
we studied, and the interface quickly settles down to a
spatially uniform pattern of asymmetric, drifting fingers.
We note that, as discussed above, theory [12,13] suggests
that the spatially uniform traveling-wave state should be
unstable to long-wavelength perturbations at the parity-
breaking transition. The transient disorder we observe
could be a manifestation of this instability; we speculate
that the uniform state may be restabilized by finite length
effects in our apparatus [37]. As v; is further increased,
the asymmetry of the fingers and the wavelength of the
pattern both increase, as can be seen from the images in
Fig. 5, as does their phase velocity. Figure 6(b) shows a
space-time image corresponding to a left-moving pattern.
Patterns with both signs of asymmetry (i.e., left leaning
and right leaning) were observed, with the direction of
drift depending on the sense of the asymmetry; those in
Fig. 5 lean to the right and move to the left.

At still higher v;, the pattern suddenly regains its re-
flection symmetry and stops drifting. The phase velocity
and asymmetry (measured as described below) drop dis-
continuously to zero. This transition is hysteretic: if v;
is now decreased, the drifting pattern does not reappear
until somewhat below the value of v; at which it disap-
peared. The wavelength of the stationary pattern which
reappears at high v; is always slightly larger than that at
v; = 0.

In Fig. 7 we plot the square of the pattern’s phase
velocity, vg, as a function of v;. Data for five differ-
ent values of v, between 139 and 157 mm/s are shown.

120

100 |

80 |
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vg? (mm?/s?)

20

v; (mm/s)

FIG. 7. The square of the pattern’s phase velocity, v},
as a function of wv; for several values of wv,. Circles,
v, = 139.4 mm/s; upward-pointing triangles, v, = 143.8
mm/s; downward-pointing triangles, v, = 148.1 mm/s; di-
amonds, v, = 152.5 mm/s; squares, v, = 156.9 mm/s. The
line is a least-squares fit to the data. The inset shows the
range of existence of the traveling state; the solid squares in-
dicate the maximum value of v; for which it was observed, as
a function of v,. The open square shows v,., the onset point
of the stationary pattern.
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FIG. 8. The pattern’s wave number as a function of v;
for three values of v,; symbols are as in Fig. 7. The lines
connecting the points are guides to the eye.

Within our experimental uncertainty, no dependence of
the slope on v, can be discerned, but the range of exis-
tence of the traveling-wave state increases linearly with
increasing v,. This is shown in the inset to Fig. 7, where
we have plotted the maximum value of v; at which the
traveling patterns were observed, as a function of v,. vy
starts to grow continuously from zero at a critical rota-
tion velocity, v¥. With velocities scaled by v,. to make
them dimensionless, a fit to the data gives

Vo) Voe = (0.201 £ 0.002) [v; /voe — (0.0353 & 0.0005)]"/* .
(17)

That is, from this data the parity-breaking transition oc-
curs at v} /v, = 0.0353 £0.005, or, in dimensional units,
at v = 3.94 4+ 0.06 mm/s.

Figure 8 is a plot of the pattern’s wave number, ¢, as
a function of v; for three values of v,, and illustrates the
steady decrease in ¢ as the control parameter is increased
through the traveling-wave state. At the transition back
to a stationary pattern at higher v;, the wave number
jumps back up, but its value in the high-v; stationary-
finger state is always smaller than in the v; = 0 state.
The lines in Fig. 8 simply connect the data points for
each value of v, and are intended only to guide the eye.

V. DISCUSSION

The behavior described above is in qualitative agree-
ment with what is expected from the theoretical descrip-
tion of a supercritical parity-breaking transition [5]. One
can see from Fig. 5 that the pattern becomes more and
more asymmetric as v; is increased, and the increased
asymmetry is accompanied by an increase in phase speed,
as expected from Eq. (7). Also, since the phase speed
should be linear in the asymmetry, the dependence of vy
on v; is roughly what one would expect from Eq. (6), as-
suming the term €@, is small. To make the comparison
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more concrete, however, we must quantify the asymme-
try of the patterns. We do this by Fourier transforming
the function which gives the interface height as a function
of . Written as a Fourier series, this function is

U(z) = Z ajcos jqr + Z b; sin jqz , (18)
j=1 ji=1

where ¢ is the fundamental wave number of the pattern.
We set the point of zero phase using the requirement that
a pattern in the form of a pure cosine wave be perfectly
symmetric; this means that b; = 0. The total power
in the Fourier spectrum is ) (a? + b?). We define an
asymmetry parameter A as

1/2
b2
A= (E—(Z;Jr—bz)) , (19)

i.e., as the square root of the fraction of the total power
contained in the antisymmetric terms. This parameter
is linearly proportional to the asymmetry A of Eq. (1)
above, for small asymmetries. Note that, because of the
way A is defined, it can never be negative, and the sign
of the asymmetry, if desired, has to be put in by hand.

The interface function U(z) was obtained from video
images of the pattern as described above. Each individ-
ual finger in the pattern was Fourier transformed, and
the results averaged over roughly five fingers in the cen-
tral part of the pattern. The fingers were in general quite
anharmonic in shape, and we used up to 40 spatial modes
to describe the interface to single-pixel accuracy. Sample
results of this procedure are shown in Fig. 9. Figure 9(a)
shows the first ten Fourier sine and cosine coefficients
for the stationary, symmetric pattern of Fig. 5(a). In
this case, the b; are all close to zero and the asymme-
try parameter is A = 0.02 + 0.03. Figure 9(b) shows the
same coefficients for the propagating pattern of Fig. 5(e).
Here the pattern is clearly asymmetric. As expected, the
contributions of the sine terms to U(z) are significant in
this case, with the 2¢ component being strongest. This
pattern has A = 0.35 + 0.03.

We performed this analysis on all of the patterns rep-
resented in the data of Fig. 7. Figure 10 is a plot of
A? vs v;, and shows that .A% grows linearly from zero
above a critical velocity. Equation (6), however, also in-
cludes a term e¢,. We performed a least-squares fit to the
data of Fig. 10, using Eq. (6) as a fitting function, with
1 = v; —v} and using our measurements of the pattern’s
wave number to determine ¢,. The fit gave ¢ = 0.2+1.6,
i.e., € was equal to zero within our uncertainty. Using
€ = 0.2, we found that the term e¢, contributed roughly
2% to the right-hand side of Eq. (6), much less than the
uncertainty in .A. We therefore neglect this term, and fit
the asymmetry data to a square-root law in the rotation
speed, v;. We find v} = 3.9+0.2 mm/s in agreement with
the value found from the data of Fig. 7. Again scaling
velocities by v,., the fit equation in this case is

A = (1.19 % 0.03) [v; /v,e — (0.035 + 0.002)]*/%.  (20)
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FIG. 9. Fourier amplitudes obtained from Fourier trans-
forming (a) the stationary pattern of Fig. 5(a), and (b) the
drifting pattern of Fig. 5(e). The circles and squares indicate
the amplitudes of the even and odd contributions, respec-
tively.
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FIG. 10. The square of the asymmetry parameter, A%, as a
function of v;, for the same patterns as in Fig. 7. The symbols
are as defined in Fig. 7, and the line is a fit to the data.
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Thus the asymmetry increases continuously from zero
with a square-root dependence on the experimental con-
trol parameter v;.

Figure 11 shows the phase velocity of the drifting pat-
tern as a function of A. The relationship is linear over
the entire range of existence of the traveling-wave state.
A fit to the data gives

Vg /Voe = (0.0043 £ 0.0029) + (0.156 £ 0.008).4. (21)

These results agree with the behavior expected at a
supercritical parity-breaking bifurcation, based on the
model of Refs. [2,4,5]. The pattern’s asymmetry increases
with a square-root dependence on the control parame-
ter, and the pattern’s drift velocity is linearly related
to the asymmetry. From our fits, we can extract esti-
mates for the coupling parameters in Eqgs. (4) and (5).
We have noted above that ¢ = 0 within our uncertainty.
and from Eq. (21) we have (when velocities are scaled by
Voe) w = 0.156 + 0.008. The intercept in Eq. (21) may
not be significantly different from zero, but we note that,
from Eq. (5), a nonzero intercept could arise if inhomo-
geneities in the pattern led to ¢,, being nonzero.

We now consider our results in terms of the ¢-2g-
coupling model, in which interactions between different
spatial modes of the pattern lead to a parity-breaking
bifurcation. In this context it is helpful to look at the
behavior of the spatial modes in the pattern as the con-
trol parameter is increased. Figure 12 presents this data
for one value of v,. In Fig. 12(a), the Fourier amplitudes
of the first four even components of the pattern, i.c..
.y ag4, are plotted as a function of v;. Figure 12(b) is
a plot of the Fourier amplitudes of the odd components.
the b;, for j = 2,3,4 (recall that we fix b; = 0). Fi-
nally, Fig. 12(c) shows the total amplitude of each mode,
(a2 +b%)'/2 for the first four modes. In all cases the am-
plitudes have been normalized by the quantity P, where
pP? = Z(af%rb?) is the total power in the pattern’s spatial
Fourier spectrum. Some general trends can be seen. As
v; 1s increased, the power in at least the second and third

FIG. 11. The pattern’s phase velocity as a function of its
asymmetry. The symbols are as defined in Fig. 7, and the line
is a fit to the data.

harmonics, relative to the fundamental, also increases. In
the case of the second harmonic in particular, it can be
seen that a phase shift develops relative to the fundamen-
tal: the amplitude of the cos(2gz) term steadily decreases
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FIG. 12. The first few Fourier sine and cosine amplitudes of
the pattern as a function of the control parameter, v;. All am-
plitudes have been normalized by the square root of the total
spectral power in the pattern. (a) Cosine amplitudes, a;; (b)
sine amplitudes, b;; (¢) total mode amplitudes. (a? + b?)”?.



while that of the sin(2gz) term increases. The ampli-
tudes of the first three odd terms in the Fourier series
increase linearly with v;; the slopes of lines through the
origin and fitted to the three data sets shown in Fig. 12(b)
are, in dimensionless units, 2.45 + 0.10, 0.77 & 0.05, and
—0.51+0.02 for the second, third, and fourth harmonics,
respectively.

According to Ref. [13], in the traveling-finger state, the
amplitudes of the first and second harmonics of the pat-
tern [i.e., the quantities C and D of Eq. (8) or, equiva-
lently, R and S as defined in Eq. (11)] should have a con-
stant ratio. This follows from the fact that, in this state,
the right-hand side of Eq. (14) is identically zero, so that
R? = 252%. We have plotted the corresponding quantities
from our experimental data in Fig. 13: the (normalized)
amplitude of the second harmonic, (a2 + b2)1/2, vs that
of the first, a;. As is evident from Fig. 13, we do not
find the predicted relationship. Rather, growth of the 2q
mode is accompanied by a linear decrease in the strength
of the ¢ mode.

The order parameter of the parity breaking in the ¢—
2q model is the phase mismatch, ¥ = 2¢ — 6, as defined
above. Here ¢ is the phase of the ¢ mode and @ the
phase of the 2¢ mode. In our analysis, we fix ¢ = 0
by our choice of origin. Neglecting the effects of higher
spatial modes, the order parameter in our case will thus
simply be equal to

6= tall-l(bz/ag), (22)

since the algebraic sign of the order parameter is unim-
portant. In the ¢—2¢ model, the parity-breaking bifurca-
tion is supercritical, and so the order parameter should
grow like the square root of the control parameter near
the transition. Our data for @ are plotted in Fig. 14, as a
function of our control parameter v;. Within the exper-
imental scatter, the relationship is linear, but the best
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FIG. 13. The total amplitude of the second spatial har-
monic, (a3 + b2)'/2, plotted against that of the fundamental,
a1. The amplitudes are normalized as in Fig. 12. An increase
in the strength of the second harmonic is accompanied by a
decrease in that of the fundamental.
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FIG. 14. The phase mismatch angle 8 as a function of the
control parameter v;. The g-2¢g model predicts a square-root
relationship.

straight-line fit to the data passes through 6§ = 0 at a
value of v; somewhat lower than v}. From our data, we
cannot rule out a square-root growth of the order param-
eter very close to the parity-breaking bifurcation (i.e.,
closer to the bifurcation than our closest data point),
which would imply an onset closer to v}, but nor do we
see any evidence for this in our data.

Finally, Eq. (15) gives the expression for ¢, in this
model. Putting this in terms of the quantities extracted
from the analysis of our data, we get for the pattern’s
phase velocity

(a3 +42)1/2

S
Vg = @1/q 7 sin 2

sinf = by /2q, (23)
since § = (a2 + b2)1/2/2. We have plotted the phase ve-
locity as a function of b2/q in Fig. 15; as before by has
been normalized by the quantity P. Bearing in mind
that the data should go through the origin, we do not
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FIG. 15. The pattern’s phase velocity plotted against the

quantity bz /q.
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find the expected linear relationship. Rather, v4 grows
more slowly than linearly with b5/q. This fact is not
independent of the above results. If we neglect the varia-
tion in wave number with v;, then, since vy vil/z, while
b, was found to grow linearly with v;, we expect to find
Vg X bé/z. Indeed, the data in Fig. 15 are well described
by a square-root function.

It is clear that the predictions of the g—2¢ model are
contradicted by our experimental results. There are sev-
eral possible reasons why this model might not be appli-
cable to this system. First, as pointed out by Cummins
et al. [31], although the calculated linear stability bound-
ary for the onset of the stationary fingering pattern is
very broad [36,37], the wavelength selected by the system
above onset is at the high-q edge of the linearly unstable
region, so the 2¢ mode is expected to be quite strongly
damped. In fact, in studies of the stationary pattern
[31], Cummins et al. found that the relative strength of
the second harmonic decreased as the system was driven
above the onset of the fingering instability. In the case of
our patterns close to and above the parity-breaking bifur-
cation, however, the second harmonic is quite important.
From Fig. 12(c), we see that at the parity-breaking bifur-
cation, the 2q mode has an amplitude roughly one-third
that of the fundamental, and that fraction increases to
about one-half at the high-v; transition back to station-
ary fingers. Clearly the 2¢ mode is significant.

One obvious difference between our experimental sys-
tem and the ¢—2¢ model, pointed out by Cummins et al.
[31], is that the experiment involves two control parame-
ters. In the theory, both the stationary pattern and the
drifting pattern appear when a single control parameter
is increased. The q—2q model has, however, been applied
successfully to Taylor vortex flow, which also has two
control parameters.

It is possible that our disagreement with the model
comes about because there are more than just two modes
with significant strength in our patterns. As Fig. 12(c)
shows, the third and fourth harmonics have amplitudes
on the order of 10-20% of the fundamental. Cummins
et al. [31] argued that their results on the sequence of
bifurcations observed in their experiments on this system
could not be explained using only two modes, but that
at least three coupled modes were necessary. Our results
are consistent with this.

Another possibility is that the g-2¢ model in fact does
apply to our system, but only very close to the bifurca-
tion. In the experimentally accessible region above the
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FIG. 1. Examples of fingering patterns observed at the
oil-air interface in the printer’s instability experiment. (a)
Symmetric, stationary fingers. (b) Asymmetric fingers drift-
ing to the right.
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FIG. 4. Schematic diagram of the experimental apparatus.
For a description, see the text.
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FIG. 5. Patterns observed at the oil-air interface with
v, = 139.4 mm/s. (a) Stationary, symmetric fingers at v; = 0;
(b)-(f) asymmetric fingers drifting to the left at successively
higher values of v;: (b) v; = 6.3 mm/s; (c) vi = 7.9 mm/s;
(d) vi = 9.5 mm/s; (e) v; = 11.1 mm/s; (f) vi = 12.7 mm/s;
(g) stationary, symmetric fingers at v; = 15.8 mm/s.
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FIG. 6. Space-time images of the fingering patterns. (a) A
stationary pattern; (b) a drifting pattern at v, = 143.8 mm/s,
v; = 9.5 mm/s.



